
Turtl Security Audit

Johannes Hald

May 5, 2021

Introduction

”The secure, collaborative notebook”1

”Turtl lets you take notes, bookmark websites, and store documents for
sensitive projects. From sharing passwords with your coworkers to tracking

research on an article you’re writing, Turtl keeps it all safe from everyone but
you and those you share with.”2

This report describes the results of an audit of Turtl’s core Rust library ”core-rs”
(referred to as ”Turtl” throughout the rest of the report), based on the commit
fd3146aa09377e0a11d5a8873c2da5983a9832a6.

The audit focused primarily on the cryptographic components and their usage
throughout the library.

Audit summary

It was found that Turtl currently lacks security-related maintenance updates.
A number of dependencies are affected by reported security issues, which may
put user-data at risk.

Even though TLS between server and client is optional, the security of commu-
nication between the two, relies heavily upon the use of it. Turtl should not
be used without TLS and, according to the developers of Turtl, TLS is also
highly recommended. Further, the Turtl server should not currently be used
with self-signed certificates (see TURTL-002).

1https://turtlapp.com/
2https://privacytools.io/software/notebooks/

1

https://github.com/turtl/core-rs/commit/fd3146aa09377e0a11d5a8873c2da5983a9832a6
https://turtlapp.com/
https://privacytools.io/software/notebooks/

Changelog

• 02-05-2021: Release of report

• 05-05-2021: Expanded suggestion for additional Key protections based on
feedback from Ionut Mihalcea.

2

Identified issues

TURTL-001: Missing check for correct initialization of lib-
sodium

The libsodium3 wrapper sodiumoxide4, provides an initialization function that
ensures, among other things, thread-safety when accessing the PRNG. This
PRNG is used to generate cryptographic key-material used to secure data.

sodiumoxide is used in Turtl, but the initialization check is never performed. As
such, the use of sodiumoxide poses a thread-unsafety risk. Turtl must include
a check for correct initialization, whenever Turtl is launched.

1 if !sodiumoxide::init() {

2 // panic! the library couldn't be initialized, it is not safe to use

3 }

Listing 1: Example check for correct initialization

TURTL-002: Possibility to trust any certificate

It is possible for users to host their own Turtl servers. For this purpose, Turtl
has a configuration option intended to allow self-signed certificates:

1 match config::get::<Option<bool>>(&["api", "allow_invalid_ssl"]) {

2 Ok(x) => {

3 if let Some(allow_invalid_ssl) = x {

4 if allow_invalid_ssl {

5 debug!("api::call() -- req: allow invalid ssl");

6 cachekey.push(String::from("allow-invalid-ssl"));

7 client_builder =

client_builder.danger_accept_invalid_certs(true);↪→

8 }

9 }

10 }

11 Err(_) => {}

12 }

Listing 2: core-rs/src/api.rs, L120-131

However, danger accept invalid certs(true) does not only allow self-signed cer-
tificates. According to the documentation of reqwest (the library used to per-

3libsodium - init()
4sodiumoxide - init()

3

https://doc.libsodium.org/quickstart##boilerplate
https://docs.rs/sodiumoxide/0.0.16/sodiumoxide/index.html##thread-safety

form HTTP requests), this allows the use of any certificate for any site, including
expired certificates5. A user deploying a server with this config-option enabled,
is vulnerable to attacks such as MITM. Turtl should instead correctly vali-
date self-signed certificates. Alternatively, Turtl could require valid certificates
signed by a trusted root and not accept self-signed certificates at all. This has
become very accessible with CAs such as Let’s Encrypt6 that offer free, valid,
and automatically renewable certificates.

TURTL-003: Vulnerable dependencies

Running cargo-audit7 on the Turtl project reports 10 dependencies with security
issues and other problems. These dependencies must be updated and a new
Turtl version must be released.

TURTL-004: Randomly generating 12-byte nonces

Turtl randomly generates 12-byte nonces to be used with ChaCha20-Poly1305.
This is considered unsafe, due to the risk of collision for a 12-byte nonce. If a col-
lision occurs, a nonce-reuse scenario will break confidentiality and authenticity
of data encrypted with the corresponding key.

1 pub fn encrypt(key: &Key, plaintext: Vec<u8>, op: CryptoOp) -> CResult<Vec<u8>> {

2 let version = CRYPTO_VERSION;

3 match op.algorithm {

4 "chacha20poly1305" => {

5 let nonce = match op.nonce {

6 Some(x) => x,

7 None => low::chacha20poly1305::random_nonce()?,

8 };

Listing 3: core-rs/src/crypto/mod.rs, L237-244

This can be avoided by either using an incremental nonce, or switching to the
XChaCha20-Poly1305 construction, for which it is save to randomly generate
nonces.

TURTL-005: Replay-attack on authentication tokens

When a user logs in to Turtl, their email and password will be used to derive
a master key. This master key is, in part, used to construct the authentication
token that authenticates the user to the Turtl server.

5reqwest - danger accept invalid certs
6Let’s Encrypt
7crates.io - cargo-audit

4

https://docs.rs/reqwest/0.10.4/reqwest/blocking/struct.ClientBuilder.html##method.danger_accept_invalid_certs
https://letsencrypt.org/
https://crates.io/crates/cargo-audit

1 /// Generate a user's auth token given some variables or something

2 pub fn generate_auth(username: &String, password: &String, version: u16) ->

TResult<(Key, String)> {↪→

3 info!("user::generate_auth() -- generating v{} auth", version);

4 let key_auth = match version {

5 0 => {

6 let key = generate_key(username, password, version)?;

7 let nonce_len = crypto::noncelen();

8 let nonce =

(crypto::sha512(username.as_bytes())?)[0..nonce_len].to_vec();↪→

9 let pw_hash =

crypto::to_hex(&crypto::sha512(&password.as_bytes())?)?;↪→

10 let user_record = String::from(&pw_hash[..]);

11 let op = crypto::CryptoOp::new_with_nonce("chacha20poly1305",

nonce)?;↪→

12 let auth_bin = crypto::encrypt(&key,

Vec::from(user_record.as_bytes()), op)?;↪→

13 let auth = crypto::to_hex(&auth_bin)?;

14 (key, auth)

15 }

16 _ => return TErr!(TError::NotImplemented),

17 };

18 Ok(key_auth)

19 }

Listing 4: core-rs/src/models/user.rs, L142-160

The above function defines the generation of aforementioned authentication to-
kens. When sent over an insecure channel, these authentication tokens may
leak whether or not a user has changed their password, by comparing two dif-
ferent authentication tokens, because the nonce is a hash of the username. The
authentication tokens are also not session-dependent. This means, an attacker
may record an authentication token for a given user at one point, and use it to
impersonate the user at a later time.

The above is possible, only if the server and client do not communicate securely
using TLS.

In general, the design of these tokens seem unnecessarily complex, which is
why the recommendation is to move to another authentication token format
altogether (such as PASETO or Branca) or simply authenticate the user based
on password hashes instead.

5

Suggested improvements

The following are suggestions for aspects that weren’t found to have exploitable
security issues, but will help strengthen the applications security stance.

Set size-limit for files or encrypt them in chunks

The Turtl app allows users to attach files, images, etc to notes. These files are
encrypted in-memory before they’re written to disk:

1 // encrypt the file using the turtl standard serialization format

2 let enc = turtl.work.run(move || {

3 crypto::encrypt(¬e_key, data, crypto::CryptoOp::new("chacha20poly1305")?)

4 .map_err(|e| From::from(e))

5 })?;

Listing 5: core-rs/src/models/file.rs, L248-252

1 // decrypt the file using the turtl standard serialization format

2 let data = turtl.work.run(move || {

3 crypto::decrypt(¬e_key, enc)

4 .map_err(|e| From::from(e))

5 })?;

Listing 6: core-rs/src/models/file.rs, L218-222

There is however no file-size limit when saving such files. This means the entirety
of a file’s content is encrypted in memory. Having no limit makes it easier for
the application to crash during encryption or decryption of the files. This can
be avoided by setting a file-size limit, which is checked before encrypting &
decrypting files. Otherwise, the files must be encrypted in chunks, which will
require a secure format for chunked encryption, such as secretstream8 from
libsodium.

Document that backups are not encrypted

If a user exports data for backup-purposes or migration between servers, this
data is not encrypted. All notes, passwords, etc are saved to disk in plaintext.
A suggestion would be to make it clear to the user through the documentation
and UI, that any exported data is not encrypted.

8libsodium - secretstream

6

https://doc.libsodium.org/secret-key_cryptography/secretstream

Make the salt used for generating invite keys random

When a user sets a passphrase for an invite key, this passphrase is stretched
with a KDF. The salt used here is a constant - the string ”invite salt” hashed
with SHA512. There is no need for the salt to be constant, so the salt should
be generated randomly instead.

1 fn gen_invite_key(&mut self, passphrase: Option<String>) -> TResult<()> {

2 let passphrase = match passphrase {

3 Some(pass) => pass,

4 None => String::from(DEFAULT_INVITE_PASSPHRASE),

5 };

6 let hash = crypto::sha512("invite salt".as_bytes())?;

7 let key = crypto::gen_key(passphrase.as_bytes(),

&hash[0..crypto::KEYGEN_SALT_LEN], crypto::KEYGEN_OPS_DEFAULT,

crypto::KEYGEN_MEM_DEFAULT)?;

↪→

↪→

8 self.set_key(Some(key));

9 Ok(())

10 }

Listing 7: core-rs/src/models/invite.rs, L125-134

Add additional protections for the key type

The Key typed used throughout Turtl, is a wrapper for sensitive key material
used to secure data. However, this type lacks additional protections that may
be implemented without much added complexity.

Key automatically derives the ‘Debug‘ trait, which opens the possibility for
the key to be leaked in debug logs. Instead, if the ‘Debug‘ trait is manually
implemented, the sensitive values in the underlying byte-array may be omitted
from the output.

1 #[derive(Debug, Default)]

2 pub struct Key {

3 /// Holds the actual bytes for our key

4 data: Vec<u8>,

5 }

Listing 8: core-rs/src/crypto/key.rs, L8-12

Although not in the scope of Turtls threat-model, zeroization of the underly-
ing bytes can be implemented relatively cheaply through the ‘Drop‘ trait. This
would be a ”best-practice improvement” for which the zeroize9 crate may be

9crates.io - zeroize

7

https://crates.io/crates/zeroize

used. Alternatively, the Key newtype may be completely replaceable by the
types provided in the secrecy library10, which is built on top of zeroize.

Lastly, the ‘PartialEq‘ trait is implemented manually for this type. However,
the implementation does not perform comparison on the underlying bytes in
constant-time. By changing the ‘PartialEq‘ implementation, this could also be
added relatively cheaply e.g. using the subtle11 crate.

1 impl PartialEq for Key {

2 fn eq(&self, other: &Key) -> bool {

3 self.data() == other.data()

4 }

5 }

Listing 9: core-rs/src/crypto/key.rs, L51-55

Weak minimum length requirement for password

When creating an account or changing the password for an existing one, the
user is required to provide a password of at least four characters. This is a very
low requirement and suggested to be raised to eight or higher.

10crates.io - secrecy
11crates.io - subtle

8

https://crates.io/crates/secrecy
https://crates.io/crates/subtle

